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1 Introduction 
Psychologists have long recognized that the human visual system has access to multi- 
ple sources of information specifying depth. These depth cues are usually grouped in 
terms of their information “type” (that is, physiological, pictorial, or motion), or by 
the level to which they specify depth (ordinal, relative, or absolute). Any good text- 
book on visual perception [Bruce, et al. 19961 provides a good overview of these cues 
and taxonomies. More thorough treatments can be found in the relevant chapters of 
the Handbook of Perception and Human Performance ([Boff, et al, 19861; see espe- 
cially the Volume I chapters by Sedgwick, Hochberg, and Arditi). We shall provide a 
very cursory summary. 

1.1 Depth Cue Taxonomies 
The British philosopher Berkeley [Berkeley, 1709/1910] provided an early taxonomy 
of depth cues. Berkeley was most concerned with what he termed “primary” depth 
cues (now more commonly called physiological cues) : accommodation, convergence, 
and binocular stereopsis. Accommodation refers to the degree to which ocular mus- 
cles tense or relax to adjust the thickness of the eye’s lens to focus on an object. 
Convergence is the degree to  which the eyes angle toward one another to  look at 
the object. In principle, both accommodation and convergence can provide absolute 
depth information, although most research suggests that, in practice, these cues play 
a minor role [Foley, 19801. The third primary (or physiological) depth cue, binocu- 
lar stereopsis, exploits the disparity information resulting from the displacement of 
our two eyes. If inter-ocular distance and vergence angle is known, binocular dispar- 
ity can, in principle, specify absolute depth. At a minimum, it provides compelling 
relative depth cues to people with functional stereopsis. (Approximately 5% of the 
population lack this ability and are “stereo blind” [Richards, 19711). 

What Berkeley termed “secondary” depth cues are now more commonly called 
pictorial cues. As might be expected, these refer to the cues resulting from linear 
perspective, and have been exploited since the Renaissance by artists to convey an 
impression of depth in two-dimensional depictions. A partial list of these cues include: 
occlusion (the obscuring object is closer); image size (larger images appear closer); 
height in the visual field (images closer to the horizon appear more distant); and 
atmospheric perspective (distant objects lose brightness and contrast due to atmo- 
spheric attenuation). Occlusion is a good example of an ordinal depth cue: the fact 
that Object A obscures Object B tells us only that Object A is closer. If one knew 
the contrast/brightness fall-off function for distance, atmospheric attenuation could, 



in principle, specify absolute depth. In practice, it too functions as an ordinal cue. 
Relative image size and height-in-field generally provide relative depth information 
(although given additional knowledge, such as absolute object size and eye height 
respectively, absolute depth could, in theory, be recovered). 

The final class of depth cues result from motion. While this can be object motion 
(e.g., the image velocity of an object falling is inversely proportional t o  its distance 
from the observer), most depth-from-motion results from the motion of the observer 
through the environment. Psychologists typically describe this information in terms 
of “motion parallax” (Le., motion lateral to  a pair of objects results in greater image 
velocity for the nearer object) or “optical expansion” (as an observer approaches a pair 
of objects, the closer one’s image will have a greater radial flow rate). Just as knowing 
inter-ocular separation and vergence allows one to recover absolute distance from 
disparity, knowledge of ego-speed allows recovery of absolute distance from motion 
parallax. Even without such knowledge, motion parallax is a compelling relative 
depth cue. 

1.2 An Alternate Depth Cue Taxonomy 
More recently, Cutting and Vishton [Cutting and Vishton, 19951 proposed an alter- 
native, functional analysis of depth cue by examining which cues are more or less 
useful as a function of context. Obviously, motion depth cues are only informative in 
situations where the observer (or objects) are moving. But the functional utility of 
all cues vary depending on situational specifics. For example, accommodation, con- 
vergence, and stereopsis are only useful at relatively near distances; beyond fifteen 
feet, all of these cues become Subthreshold (i.e., imperceptible to  human observers). 
Conversely, atmospheric perspective is subthreshold at close distance, and only be- 
comes a meaningful cue when objects are thousands of meters distant (unless one is 
in San Francisco on a foggy day). 

Cutting and Vishton categorize depth cues into those whose utility is invariant 
with distance (e.g., occlusion and relative size), those whose utility diminishes with 
distance (e.g., the physiological depth cues); and those whose utility increases with 
distance (e.g., atmospheric perspective). They then divide the space surrounding 
an individual into three functional regions: Personal space (0-2 meters - generally, 
the region in which a person manipulates objects); Action space (2 - 30 meter - the 
region in which a person moves quickly to act upon the environment); and Vista space 
(beyond 30 meters - basically the region in which a person plans future navigation). 
Cutting and Vishton argue that, because the relative utility of depth cues vary as a 
function of region, the relative importance (or weighting) the observer places on those 
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cues will likewise vary. 
This raises the more general question of how observers integrate depth cues. 

1.3 Depth-Cue Integration 
Since the late 1980’s, there has been a concerted effort to model how human observers 
integrate depth cues. In most natural viewing situation, of course, the various cues are 
consistent with one another. In fact, information provided by one depth cue can ‘(pro- 
mote” another’s information by providing additional constraints [Landy et al., 19951. 
For example, if convergence specifies the absolute distance to the nearer of two ob- 
jects, then it can “promote” stereopsis such that metric layout is recoverable. Thus, 
the visual system need only determine a ”depth map” that satisfies the multiple 
constraints of the contributing cues. 

In contrast, an artificial spatial display (be it a painting or a simulator screen) 
typically contains conflicting depth cues. For example, in a depiction of an outdoor 
scene, linear perspective might specify Tree B’s depth to be twice as great as Tree 
A’s, but accommodation and convergence suggest they’re at the same depth. How 
does our visual system resolve this paradox? 

1.3.1 Depth-Cue Integration Models 

Generally, models posit similar depth-cue integration mechanisms for both situations: 
an algebraic combination of depth cues. Three classes of combinatory rules have been 
proposed: Selection; Additive combinations; and Multiplicative combinations. Bruno 
and Cutting [Bruno and Cutting, 19881 provide a useful overview of these classes. 

Selection occurs when only one depth cue is used to determine an object’s depth 
and the other available cues are disregarded. This mechanism is mathematically 
equivalent to Bulthoff and Mallot’s veto process [Bulthoff and Mallot, 19881. In such a 
scheme, one cue is utilized, unchallenged by other cues (despite possible discrepancies 
in their depth information). The equation describe this process is: 

d = f (s1) 
where d is the distance perceived, s1 and s2 are two candidate sources of informa- 
tion (i.e., the two depth cues) with s1 being the only one that is utilized for the 
determination of depth. 

In an additive scheme of cue integration, observers process all available cues, weight 
them, then add the results to determine the depth. This model can be described by 
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the following equation: 
d = f ( W 1  + w 2 s 2 )  

where d is the perceived distance, s1 and s 2  are sources of information, and w1 and 
w 2  are the weights assigned to each source depth. Note, of course, that Selection is 
simply a special case of the additive model, in which the weights for all but one cue 
are set to  zero. 

The third possible rule class involves the multiplicative combination of depth cues. 
In these models, observers use some cues to modify information from other cues. A 
plausible equation for multiplicative integration is: 

As Bruno and Cutting acknowledge, hybrid combinatory rules may prove viable, 
combining addition and multiplication in various way, such as where a particular 
depth cue (sl) is weighted independently and also influences the weighting of a second 
depth cue ( sz ) ,  as in: 

Or cues could be weighted both independently and in the context of other cues si- 
multaneously, as in: 

d = f ( W 1  + SlW2S2)  (4) 

d = f ( W i s 1  + ~ 2 ~ 2  + ~ 1 ~ 1 ~ 2 ~ 2 )  (5) 

1.3.2 Cue Integration Findings 

While selection is seldom proposed as the primary mechanism for depth cue integra- 
tion, instances can be found in which selection appears to operate, particularly in the 
case of cue conflict. For example, Bulthoff and Mallot [Bulthoff and Mallot, 19881 
found that if .edge information (i.e., occlusion) is present, it overrides both shape- 
from-shading and disparate shading-depth information. 

More commonly, empirical studies suggest additive combination rules. Bruno and 
Cutting [Bruno and Cutting, 19881 performed three experiments testing perceived ex- 
ocentric distances as a function of both static and motion cues (including relative 
size, height in the projection plane, occlusion, and motion parallax) and found the 
greatest support for the additive combination rule. Similarly, linear combination 
rules provide good fits for the combination of stereo disparity and texture gradi- 
ent [Johnston et al., 19931, texture gradient and motion parallax [Young et al., 19931 
and stereo disparity and linear perspective [Stevens and Brooks, 19881. 

A number of researchers have reported findings consistent with multiplicative 
combination rules. Massaro’s fizzy Logical Model of Perception (FLMP) used a 
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specific multiplicative model of cue integration based on fuzzy logic [Massaro, 1988, 
Massaro and Cohen, 19931 to fit depth judgment data and reported a fit superior 
to that obtained with linear models. Others have reported superior fits with non- 
linear models, especially in cases of recovering surface structure from multiple depth 
cues [Bradshaw and Rogers, 1996, Curran and Johnston, 19941. 

A study by Johnston, Cumming, and Landy [Johnston et al., 19941 lends empirical 
credence to  Cutting and Viston’s proposal of contextual cue weighting. Johnston, et 
al. pitted stereo disparity against motion parallax cues in their task, and varied both 
the number of frames of animation (to vary the utility of the motion cue) and the 
observer’s viewing distance (to vary the utility of the disparity cue); they found that 
observers’ weighting of the two cues varied as a function of condition, with greater 
weight assigned to the stronger cue. 

1.4 Extending Cue Integration to an Active Control Task 
Both the Cutting and Viston chapter and the Johnston, et al. study recognize that 
depth-cue integration is unlikely to be a fixed, inflexible process. Rather, our per- 
ceptual system is sufficiently intelligent to  consider the quality and reliability of the 
various sources of information when deriving an estimate of depth. The Modified 
Weak h s i o n  model proposed by Landy, et al. and Massaro’s FLMP likewise recog- 
nize that the weighting of cues should be dynamic (i.e., adjusting to  accommodate 
changes in viewing circumstances, and resulting changes in the various cues’ utility). 

However, all of this work has examined depth-cue integration in the context of 
“passive” perception - that is, observers are asked to view displays and make verbal 
or keyboard responses concerning scene layout or surface curvature. Our goal is to  
study depth-cue integration in the context of active control, and to model depth 
perception as one component of the manual control task. In this way, we build upon 
previous models of depth-cue integration, and expand their application to a dynamic, 
closed-loop control model. 

As we will show, current formulations of depth-cue integration are amenable to  
inclusion as modules in larger control models. Once the cue-integration module is 
integrated into the control model, we can examine whether people’s depth-cue inte- 
gration is impacted, not only by changes in the “quality” of the cue, but also by the 
utility that information holds for the control task they must perform. Thus, we can 
investigate whether people’s depth cue integration strategies are merely clever enough 
to adjust to changes in cue “quality,” or sufficiently intelligent to utilize the cues best 
suited for the task at hand. 
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2 Depth Cue Control Model 
In this report, a model is developed that describes the control strategy the human 
operator adopts in performing a depth control task when two depth cues are available 
to the operator. It is an extension of a modeling technique that was developed to 
examine manual control in perspective scene viewing situations [Sweet, 19991. This 
modeling technique relies heavily on the discipline of manual control, and a particular 
model of human operator characteristics called the Crossover Model. 

In this section, a brief background on the Crossover Model is presented (Sec- 
tion 2.1). Then, a model of depth-cue integration and control is presented that is 
based upon the characteristics of the Crossover Model (Section 2.2). 

2.1 Crossover Model of Manual Control 
Manual control is described as a control situation in which a human operator is 
required to make nearly continuous control adjustments to achieve a desired out- 
come. This situation has been extensively studied and modelled; a summary of the 
various approaches can be found in [Hess 19971. One of the first models developed 
for simple control situations is termed the Crossover Model [McRuer et al., 1965, 
McRuer and Krendel 19741. This model was found to be descriptive of the control 
compensation a human operator provided in a variety of circumstances. A simplified 
block diagram of this model is shown in Figure 1; the compensation supplied by the 
operator is Yp, and the element the operator is controlling is Y,. McRuer and his col- 
leagues found that, over a large variation in the dynamics of the controlled element 
Yc, the operator adjusted his compensation Yp is such a way that: 

w, exp( -sr) 
S 

y,(s)yc(s) = 

The variable s is the Laplace Transform variable [Cannon 19671; w, is the crossover 
frequency, and r is a time delay. In words, the operator adjusts his compensation 
so that thc product of his compensation and the controlled elemcnt will yield an 

Figure 1. Simplified block diagram of crossover model of manual control. 
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integrator with a time delay. The crossover frequency wc is defined as the frequency 
at which the open-loop system transfer function has a magnitude of unity: 

The crossover frequency determines the bandwidth of the closed-loop system, or the 
input frequencies above which effective tracking cannot be accomplished. Typical 
values for w, range from 1.0 to  6.0 rad/sec, time delays r range from 0.2 to 0.5 
seconds [McRuer et al., 19651. 

The effects of changing controlled element dynamics can be plainly seen with this 
model. Consider the case of rate-control (first-order) dynamics (Yc = l/s). This 
refers to situations in which the rate-of-change of the controlled state is proportional 
to the control effector displacement. One real-world example of rate control is the 
lateral control of an automobile; the rate-of-change of direction is proportional to  the 
steering wheel displacement. For this case, the operator would apply the approximate 
compensation Yp = w,exp(-s~). This type of compensation on the part of the 
operator is termed proportional compensation; the output of the operator is simply 
a time delayed (exp(-sr)) and scaled (w,) version of the input. 

A second type of dynamics is acceleration-control (second-order); an example is 
the attitude control or position control of a spacecraft. In these cases, the accelera- 
tion of the desired state is proportional to  the displacement of the control effector. 
When presented with acceleration-control dynamics ( yC  = 1/s2), the operator needs 
to provide compensation of the approximate form Yp = w,sexp(-s~). This type 
of compensation is called derivative compensation because of the s term; instead of 
feeding back position, the operator is feeding back a time delayed derivative of the 
input, which can also be termed velocity. When using rate-control dynamics, the 
operator needs to supply only proportional or position information. When the dy- 
namics become acceleration control, the operator must feed back velocity information 
instead. 

The previous discussion focussed upon the first model developed by McRuer and 
his colleagues, and was intended to  be valid specifically in the frequency range of 
crossover. Eventually, the model was extended to provide accurate description of the 
operator at frequencies well above and below the crossover frequency. This new model 
form was termed the Precision Model; it's basic form is shown below: 
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The terms TL and TI represent the basic lead and lag equalization capabilities the hu- 
man provides. The terms TK and 7’‘ represent a low-frequency lag-lead equalization 
that is sometimes observed called the low-frequency “phase droop”. This typically 
appears when the forcing-function bandwidth increases. The terms TN,,  wn, and cn 
represent the neuromuscular dynamics. K p  represents the gain the operator adopts, 
and T is a lumped time delay representing pure time delays in both the perceptual 
and neuromuscular systems. Because the experimental measurements spanned a fre- 
quency range well below and above the crossover frequency, the depth-control model 
developed here is based upon a simplified version of the Precision Model. 

2.2 The Depth-Cue Integration and Control Model 
An Idealized Depth Control Paradigm Because the controlled element dynam- 
ics affect what type of information the operator is trying to use as feedback, these 
dynamics might also affect the way in which the operator obtains information from a 
display. A conceptual block diagram of the human performing a depth-control task 
is shown in Figure 2. In this idealized system, the human operator is presented with 
both desired depth and actual depth via a perspective display. The operator perceives 
some characteristic(s) of the display, and formulates a desired control response. The 
perception and control process includes integration of all available cues into a single 
intended control response. This intended control response is used to drive the limb 
of the operator, which is manipulating the control effector (such as a joystick). The 
displacement of the control effector drives the dynamics of the controlled element, 
which affects the actual depth being displayed. 

Although this figure is useful for conceptualizing the depth-cue integration and 
control task, it is not a particularly useful model for experimental validation. This is 
because many of the states and characteristics shown are unmeasurable. Specifically, 
states internal to the operator, or even direct force output of the operator that cause 
the displacement of the control manipulator, are not generally available. Thus, when 

................................... 

I :H!.l!ar??pe‘a!?r. ..................... ~ I 
Figure 2. Conceptual block diagram of a manual depth-control task. 
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Figure 3. Block diagram of depth-cue integration model used for describing-function 
identification, assuming neuromuscular dynamics process. 

examining this situation in an experiment, it is the input-output relationships between 
the controlled states (in this case depth) and the control effector displacement that 
can be characterized. In the next section, such a model is described. 

Describing Function Model and Measurement A block diagram of the model 
used for experimental measurement and validation is shown in Figure 3. As can be 
seen, the display, human operator, and control effector are effectively lumped into 
one system. This is necessary because the direct inputs to the human operator from 
the display are not known, and the direct force output of the human is not known. 
However, the inputs to  the display, and the output of the control effector, are known. 

The human elements of the model include perceptual, control, and neuromuscular 
dynamics processes. The input to the perceptual process is the display, and the output 
of the neuromuscular dynamics goes directly into the control effector. The perceptual 
process includes both position and motion perception. It is assumed that the operator 
uses both relative size and stereo disparity to form perceptions of position (depth) and 
velocity (depth motion). The outputs of the perception, both position and velocity, 
are weighted and combined to form a desired control response. This desired control 
response then goes through the neuromuscular system before acting upon the control 
effect or. 

Several parameters and models define the model shown in Figure 3. The percep 
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tual processes are defined by two weights, W,,, and Wps, which can each have values 
between zero and one. W,,, is the weighting put on stereo disparity in the velocity 
perception process; Wps is the weighting of stereo disparity in the position perception 
process. By constraining the weights to vary between zero and one, the outputs of the 
perception process are simply weighted sums of the inputs from stereo disparity and 
relative size, without any gain factors. In the control process, the control strategy 
of the operator is created by applying gains to  velocity K,, and position Kp, then 
summing these to form a control input. It has long been established in manual con- 
trol that an operator’s control strategy resembles this block: a linear combination of 
velocity and position feedback. The neuromuscular process contains a neuromuscular 
transfer function, Yn (which will be elaborated upon in Section 3.2.2) as well as a 
source of internal noise T ,  called remnant. 

Characteristics of this model related to the perception, control, and neuromus- 
cular dynamics can be measured through careful selection and manipulation of the 
disturbances affecting the displayed depth. An overall disturbance, x, is used to 
perturb both stereo disparity and relative size simultaneously. At the same time, dis- 
turbances y and z are used to independently perturb the stereo disparity and relative 
size, respectively. By examining the interrelationships between the disturbances and 
the control output of the operator, experimental measurements related to the model 
parameters and functions (W,,,, Wps, K,,, K p ,  Yn) can be obtained. 

From the block diagram in Figure 3, we can write the following relationships: 

By substituting Equations 10, 11 and 12 into Equation 9, we obtain the following 
expression for S which is only a function of the model parameters and model inputs: 

S( 1 + ynYc(sKv + ~ p ) )  = -yn{ ( S K ~  + K ~ ) X  + 
(~Kvwv, + KpWps)~ + ( s K ( 1  - W,,) + Kp(l  - WpS)) z }  + T (13) 

Similarly, substituting Equations 11, 12 and 9 into Equation 10 will yield an expres- 
sion for d which is only a function of the model parameters and model inputs: 
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+ ( s m  - Wu,) + Kp(l - WPS))"] + r }  + x (14) 

The term 1 + Y,Yn(sKv + K p )  in the previous equations appears repeatedly in the 
following derivations. A simplifying term will now be defined for ease of interpretation: 

A = 1 + YcY,(sKu + K p )  (15) 

Taking the cross-spectral densities of Equations 13 and 14 with respect to x will yield: 

Taking into account the fact that the disturbances x,, 
with each other (a,, = = 0), Equation 16 becomes: 

y, and z are not correlated 

Further assuming that the noise signal T is uncorrelated with 5 (QTZ = 0), and 
taking the ratios between the two expressions, we get: 

The cross-spectral density of 6 can also be derived relative to y and z: 



Accounting for the uncorrelated 
Qr, = 0), the equations become: 

J 

disturbances (azy = Q,, = aYz = Qr, = Qry = 

a& = -+-G(l - W,,) + K p ( 1  - wpS)pz2 A 

We can now use these relationships as the basis for empirical modeling based upon 
experimental measurements of operator response. In the next section, an experiment 
is described in which these measurements are used to derive the parameters of the 
depth-cue integration and control model. 
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3 Experiment 
An experiment was conducted to determine the cross-spectral density estimates pre- 
viously defined. Both the controlled element dynamics and the viewing distance were 
manipulated to determine what effect (if any) these variables had on the operator 
characteristics. In Section 3.1, the experimental protocol is described. The experi- 
mental results are described in Section 3.2. 

3.1 Method 
3.1.1 Participants 

Eight male, general-aviation pilots participated in the study. They were recruited 
from a paid contractor pool at Ames Research Center. All had normal or corrected- 
to-normal visual acuity and good stereo vision (40 seconds of arc or better). Their 
flight experience ranged from 100 to 4500 logged hours. 

3.1.2 Apparatus 

The experimental control program was run on a Silicon Graphics Octane computer 
with an RlOOOO processor. Control inputs were made via a B&G Systems JF3 3-axis 
joystick. (Only the longitudinal degree of freedom of the stick was used; the lateral 
and yaw inputs of the stick were disabled.) Stereo images were viewed through Crystal 
Eyes polarizing shutter glasses. The monitor displayed the views for the left and right 
eye on alternating refreshes at a rate of 96 Hz, yielding an effective update rate to 
each eye of 48 Hz. Control data from the joystick was updated at 48 Hz. The images 
were displayed on a 19-inch diagonal monitor, with a resolution of 1024 (width) by 
768 (height) pixels. 

3.1.3 Stimuli and Control Tasks 

In all conditions, participants viewed two horizontally aligned geometric forms. The 
background color was grey, with an RGB (red, green, blue) value of [0.7, 0.7, 0.71 
(where [0, 0, 01 is black and [1.0, 1.0, 1.01 is white). The faces of the cubes were 
blue [0.5, 0.5, 1.01, and the edges of each face were outlined with a darker blue [0.4, 
0.4, 0.81. (These colors were chosen to minimize the stereo “ghosting” that can result 
from persistence of the monitor phosphors, while still providing adequate levels of 
contrast .) 
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The left-hand object served as the “standard” and was rendered at a constant 
depth. The object on the right was the control target. Participants were instructed 
to move the joy stick longitudinally (fore and aft) to maintain the target at the same 
apparent depth as the standard. 

Other aspects of the displays and control task were varied as a function of ex- 
perimental condition. The three experimental factors were: viewing distance; control 
task dynamics; and disturbance function. We discuss each of these in turn. 

Viewing Distance. Participants were seated at two different viewing distances: 
“near” (22 inches form the screen); and “far” (33 inches from the screen). In the 
near condition, the display subtended approximately 35 (horizontal) by 26 (verti- 
cal) degrees. In the far viewing condition, the display subtended approximately 24 
(horizontal) by 18 (vertical) degrees. 

In the near condition, the objects (at standard depth) were scaled to have a screen 
image size of 3.0 inches, and were spaced 4.5 inches apart (center to center). The 
near-viewing scene is shown in Figure 4. 

In the far condition, the scene was magnified to maintain visual angles equivalent 
to  the near condition. Thus, because the distance was increased by a factor of 1.5, 
all of the scene features were also scaled by a factor of 1.5. However, the inter-ocular 
distance used to render the views of the two eyes was held fixed at 3.0 inches. These 
manipulations ensured that the visual angle subtended by the object would remain 
consistent between the two conditions, while the stereo disparity was diminished 
because of the greater viewing distance. The far-viewing scene is shown in Figure 5. 

Control Task Dynamics. Two different sets of control task dynamics were simu- 
lated: rate control and acceleration control. In the rate-control condition, the velocity 
(in depth) of the target was proportional to the amount of joystick displacement. In 
the acceleration-control condition, acceleration was proportional to stick displace- 
ment. The equations describing these dynamics, and difference equations used for 
digital simulation of the dynamics, are provided in Appendix A. l .  

Disturbances. 
object’s depth: 

Three disturbance sources were generated to perturb the target 

1. A sum-of-sines disturbance of both depth cues (image size and stereo disparity). 
Thus, the disturbance of the two cues is correlated. 

2. A sum-of-sines disturbance of the image size cue alone. 
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Figure 4. Screen image for near viewing condition. Note: This image was rendered 
using zero stereo disparity; in the experiment, the Standard object was rendered with 
a set disparity and the Target object with a variable disparity. 
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Figure 5. Screen image for far  viewing condition. Note: This image was rendered 
using zero stereo disparity; in the experiment, the Standard object was rendered with 
a set disparity and the Target object with a variable disparity. 
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3. A sum-of-sines disturbance of the stereo disparity cue alone. 

In the Baseline Disturbance condition, only the correlated disturbance source is 
present (referring to  Figure 3, the disturbances y and z were set to zero, and x 
was non-zero). In the Multiple Disturbance condition, all three disturbance sources 
are present (specifically, x, y and z in Figure 3 were all non-zero). The baseline 
condition was included to compare with operators’ strategies in response to multiple, 
uncorrelated disturbance sources. 

3.1.4 Design 

As stated above, our three experimental factors were: 1) Viewing Distance (Near 
versus Far); 2) Control Task Dynamics (Rate versus Acceleration); and 3) Disturbance 
Type (Baseline versus Multiple). 

Limitations in our graphic display hardware made it infeasible to conduct a full 
factorial design. In particular, the tight spacing of the Standard and Target objects in 
the Far Viewing condition was not compatible with Acceleration-Control Dynamics - 
participants could not achieve sufficiently precise control to avoid images overlapping 
one another or the screen edge (which completely compromises the fidelity of the ren- 
dered depth cues). Thus, a partial factorial design (within-participant) was employed, 
as shown in Figure 6, wherein the five conditions presented to each participant were: 

1. Rate Control, Baseline Disturbance, Near Distance (R, B, N) 

2. Rate Control, Multiple Disturbances, Near Distance (R, M, N)  

3. Rate Control, Multiple Disturbances, Far Distance (R, M, F) 

4. Acceleration Control, Baseline Disturbance, Near Distance (A, B, N) 

5. Acceleration Control, Multiple Disturbances, Near Distance (A, M, N )  

This design permitted us to evaluate the impact of Viewing Distance for Rate- 
Control dynamics with Multiple Disturbances (conditions 2 vs 3), and to examine the 
effect of Control Task Dynamics when participants are at the Near Viewing Distance 
(conditions 2 vs 5). We were also able to qualitatively examine participants’ strategy 
shifts (in the presence/absence of uncorrelated disturbances) within the Near Viewing 
Distance conditions (conditions 1 vs 2, 4 vs 5). Multiple trials were run within each 
condition. Each block of trials consisted of a training trial and four data trials. The 
order of trial blocks was pseudo-radomized across participants, as shown in Table 1. 
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Figure 6. Study Design. 

Participant 
1 
2 
3 
4 
5 

Condition 

Table 1. Experiment presentation order by participant and day. The first character 
denotes the control type (R for rate, A for acceleration); the second character denotes 
the disturbance condition (B for baseline, M for multiple disturbances); the third 
character denotes the viewing distance (N for near, F for far). 
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3.1.5 Procedure 

Participants were given written task instructions describing their task and its dis- 
cernable variations (i.e., Near and Far viewing, Rate and Acceleration control). A 
copy of these instructions appears in Appendix A.2. Participants were then given an 
opportunity to  ask questions. Once started, the task was entirely self-paced. The 
experimenter intervened only to assist with changes in viewing distance as required 
between blocks of trials. 

The experiment took two days for participants to complete; participants experi- 
enced only one type of control dynamics (Rate or Acceleration) per day. Each day's 
session began with a brief session of training trials (eight for each of the two or three 
conditions the participant would see that day). Participants then completed a block 
of trials (consisting of one training and four data trials) for each condition. This 
was followed by a thirty-minute lunch break. After lunch, participants completed a 
second series of blocks. Paticipants were given additional 5-minute breaks between all 
blocks. Prior to the start of the second day, participants were administered a stereo 
vision acuity test. 

Each data trial lasted four minutes, five seconds. Training trials lasted one minute. 
Both data and training trials were initiated by the particpant pressing the trigger 
switch on the joystick. During the first five seconds of both training and data trials, 
the disturbances ramped linearly from zero to full intensity. Operators were not given 
feedback on their performance on either training or data trials. 

3.2 Results 
3.2.1 Statistical Analysis 

Two dependent measures were considered: percent of control power correlated with 
input disturbances, and depth error RMS. These analyses were conducted only on 
the Multiple Disturbance trial data (i.e., those trials that contained independent 
disturbances of the stereo'disparity and relative size cues). 

Because our design was not a full factorial, two independent ANOVAs (ANalysis 
Of VAriance) were performed for the percent of control activity measure. The first, 
using only the rate-control task data, consisted of an 8 x 2 x 2 factorial with repeti- 
tions, viewing distance (Near versus Far), and disturbance (relative size versus stereo 
disparity) as factors. The second, using only the near viewing distance data, was an 
8 x 2 x 2 factorial with repetitions, control task dynamics (rate versus acceleration), 
and disturbance (relative versus and stereo disparity) as factors. 
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Figure 7. Effect of viewing distance on distance error RMS (a) and percent of control 
activity correlated with disturbances (b). Standard error bars are shown. 

For the depth error RMS, two analyses were performed. The first was an 8 x 2 
factorial with repetitions and viewing distance as factors; the second an 8 x 2 factorial 
with repetitions and control task dynamics as factors. 

Effect of Viewing Distance A significant main effect on depth error RMS was 
found for viewing distance (F[1,7] = 64.06, p < .001), with a smaller error associated 
with the Near condition as can be seen in Figure 7a. The percent of control activity 
demonstrated no significant main effect for viewing distance or disturbance source 
(Figure 7b), but there was a significant interaction (F [1,7] = 14.45, p < . O l ) ;  the 
percent of control activity associated with the two cues is approximately equal in the 
Near condition, whereas relative size dominates in the Far condition. 

Effect of Control Task Dynamics A significant main effect on depth error RMS 
was found for Control Task Dynamics (F[1,7] = 32.09, p < . O O l ) ,  with a smaller 
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Figure 8. Effect of control task dynamics on distance error RMS and percent of 
control activity correlated with disturbances. Standard error bars are shown. 

error associated with the Rate condition (see Figure sa). The percent of control 
activity demonstrated main effect for Control Task Dynamics (F[1,7] = 6.20, p < 
.05), with a higher percent of correlated control power in the Acceleration Condition 
(see Figure 8b). The effect of Disturbance Source did not reach significance (F[1,7] = 
4.55, p = .07), but relative size demonstrated slightly greater correlated control power. 
Likewise, a trend towards an interaction of Control Task Dynamics and Disturbance 
Source was noted (F[1,7] = 3.74, p = 0.094). 

3.2.2 Individual Models 

F'rom the experiment described, time histories of the variables d, x, y, z ,  and b (see 
Figure 3) are available; b is the measured control displacement, while x, y, z and 
d are created in the computer simulation. Relationships between the cross-spectral 
densities of these time histories and model parameters were developed in Section 2.2; 
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Equations 16, 17, 21 and 22 can be used to  form relationships between the model 
parameters and cross-spectral densities. The terms HT,  HSD,  and HRS are defined 
as follows: 

Estimates of the describing functions from 
are defined as: 

HT = 

h s D  = 

I;lflS = 

the cross-spectral density measurements 

The terms HT,  H ~ D ,  and HRS represent the parameterized models correspond- 
ing to the available measurements. HT,  H ~ D ,  and HRS are terms to represent the 
measurements from the cross-spectral density estimates. These estimates are formed 
from the time histories of the variables 6, d, z, y, and z.  The specifics of this process 
are described in Appendix B. The notation was chosen to  simplify interpretation of 
the measurements and models. The HT measurement refers to  the operators control 
response to  the disturbance which goes into both stereo disparity and relative size 
simultaneously; H s D  refers to the control response to  the disturbance which is per- 
turbing only stereo disparity, and H R ~  refers to  the control response to  the disturbance 
which is perturbing only relative size. 

Given the measurements (I?*, HSD, I?Rs), parameters to  define Y,; W,,, Wps, 
K,, and Kp can be determined that best match these measurements (Yc is a known 
function, being the controlled element dynamics). In the proposed model, W,,, Wps, 
K,, and Kp are all scalar elements; Yn is a parameterized transfer function whose 
form has not yet been defined. The basic model form chosen for Yn was: 

_ _  exD - ST) 
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The term Y N  represents the combination of the neuromotor limb dynamics and 
control effector. This form was chosen because it generally provided good correspon- 
dence with the data. Note that the only time delay present in the model is shown in 
Yn; this time delay is meant to represent the sum of the perceptual and motor delays 
present in the system. This representation is mathematically equivalent t o  putting 
a separate perceptual delay directly “downstream” of the display, and was done to  
simplify the model identification. 

The parameters of these functions, specifically r ,  u n ,  cn ,  Kp ,  K,, W,,, and Wps, 
were determined to  best fit the measurements for each operator and condition; Ap- 
pendix C describes the process used to  fit the data. The resulting parameters are 
presented in Section A.3 of Appendix A, and plots of the measurements and models 
are shown in Section A.4. Some specific aspects of these parameters will be discussed 
in the following sections. 

Crossover Frequency and Phase Margin Two commonly used metrics in man- 
ual control are crossover frequency (uc) and phase margin (4m). For this model, 
the crossover frequency and phase margin of this model are defined by the following 
relationships: 

The crossover frequency determines the bandwidth of the system, or the frequency 
above which tracking performance starts to  degrade. The phase margin is a measure 
of the stability of the closed-loop system. When the phase margin approaches zero, 
slight uncertainties in the plant dynamics or variations in loop gain can create unstable 
closed-loop characteristics. 

The crossover frequencies and phase margins for all operators and conditions are 
shown in Figure 9, and Table 6 in Appendix A. 

Comparing the two rate-control cases (near and far), it is clear that there is little 
variation in these parameters (for a particular operator) between the two conditions. 
Comparing the near rate-control case with the near acceleration-control case, the 
largest change is a significant drop in the phase margins with the acceleration-control 
case. This is a natural consequence of the controlled element dynamics. In the 
acceleration-control case, the controlled element has much more phase lag (90 de- 
grees) than the rate-control element. Thus, the operator/element system will tend to 
have more phase lag with the acceleration element than the rate element. Crossover 
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frequencies were generally lower with the acceleration-control dynamics than with 
rate-control dynamics, as has been observed in previous manual control research. 

The observed range of crossover frequencies, phase margins, and trends as a func- 
tion of controlled element dynamics are all consistent with the body of manual control 
work that has preceeded this [McRuer et al., 19651. These parameters do little to ex- 
amine the perceptual and control processes of the operator, which are the subject of 
the next sections. 

Velocity and Position Perception Parameters The parameters in the model 
shown in Figure 3 relating to velocity and position perception are V7,, and W,,, 
respectively. W,, is the weighting factor on stereo disparity for velocity perception, 
and W,, is the weighting factor on stereo disparity for position perception. Because 
the model structure assumes that the sum of the inputs will produce a unity gain, 
the weightings of relative size are determined by the weightings on stereo disparity. 

Figure 10 and Table 7 in Appendix A show the values of Wps (position weight) 
and W,, (velocity weight) for all operators and conditions, as well as mean values. 
Although there is a moderate amount of inter-subject variability in these parameters, 
it is clear from the mean values that position estimation is more dependent upon 
stereo disparity (i.e., Wps > .5), and velocity estimation is more dependent upon 
relative size (Wvs < .5). Statistical analysis showed this to be a significant effect 
(F[1,7] = 37.023, p < .0005) across all conditions. In the rate-control conditions, 
the weighting on stereo disparity decreased for the far viewing condition, for both 
velocity and position perception. This main effect of viewing condition was shown to 
be significant (F[1,7] = 16.999, p = 0.004). In comparing the acceleration-control and 
rate-control conditions, the only significant effect seen in the perception parameters 
was that the weights of stereo disparity associated with position perception (W,,) are 
greater than the weights associated with velocity perception ( WVs). 

The dependence of operators upon stereo disparity as a cue was not related to 
operators static stereo acuity. Figure 11 shows the weights Wps and W,,, for all 
conditions, with static stereo acuity scores. There is no significant correlation between 
the two parameters. 

Control Parameters The parameters which specify the control strategy of the 
operator are the gain on velocity, K,, and the gain on position, K,. Figure 12 shows 
these values, as well as the ratio between them, for all operators and conditions. The 
gain values K p  and K, are shown in Table 8 in Appendix A. The ratio K,,/K, has a 
special meaning in control engineering, and is referred to as “lead”. A term of the form 
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sK, + Kp is labelled a lead network. This is because the output of a circuit with this 
transfer function would “lead” the input, in phase, because its output is proportional 
to not only the input, but also to the input velocity. For large values of K, (K,  > K p ) ,  
lead is high, and the output largely proportional to the velocity of the input. For 
the converse case (K ,  < K p ) ,  lead is low, and the output is largely proportional to 
the input. This lead term is clearly visible in the model transfer function to overall 
depth disturbance (Equation 25). Previous work in manual control has shown that 
for acceleration-control dynamics, the operator needs to generate additional lead to 
achieve acceptable levels of closed-loop performance. This is clearly demonstrated in 
Figure 12; for all operators and conditions, lead dramatically increases for the near 
acceleration condition. 

Mean values for these gains and ratios are shown in Figure 13. The increase in lead 
is clearly shown, but it is more interesting to note that this increase in lead occurs 
primarily because of a drop in position gain Kp,  not from an increase in velocity gain 
K,. The velocity gain K, remains relatively unchanged with changes in condition. 

Neuromuscular Parameters The neuromuscular dynamics function Y,, as de- 
fined in Equation 31, consists of a second-order system in the numerator (assumed 
to be related to the neuromuscular dynamics of the operator) and a pure time delay. 
The parameters’ associated with this function, w N ,  (N, and 7, are shown in Figure 14 
and Table 9. As can be seen, for most operators and conditions the natural frequency 
( W N )  is in the range2 of 3.5 to 8.0 rad/sec; damping ((N) is higher (> 0.5) for rate 
control3 conditions than acceration control (< 0.5). Although the second-order neu- 
romuscular system is required to obtain accurate fits to the measurements, it has little 
direct effect on the closed-loop system performance. This is because the frequency 
range in which it operates was above the observed crossover frequency in all cases 
(the highest observed crossover frequency was 2.45 rad/sec). 

‘The rate-control condition data of Operator 6 was better represented by a first-order system 
in the denominator as opposed to a second-order system. The parameters associated with this 
first-order term are included in Section A.3. 

2These neuromuscular frequencies are lower than the typically observed range of W N  of 15 to 
20 rad/sec, but similar results have been obtained before [Stapleford et al., 19691. It has been 
demonstrated that identified values in this range can result from a “pulsive” control strategy, which 
some operators are known to adopt [Hess 19791. 

3The reader might notice that in the rate-control condition, the value of the damping exceeds 
unity for some operators. In these cases, the neuromotor dynamics no longer consist of a damped 
oscillatory second-order system, but instead consist of two first-order terms, specified by the roots 
of the characteristic equation s2/w$ + 2 s c N / w N  + 1 = 0. 
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Time delays clustered in the range of 0.23 to 0.31 seconds, which is well within 
the expected range from previous manual control studies [McRuer et al., 19651. 

Overall Fit Quality In most cases this simple model could be adjusted to  achieve 
a relatively high quality of fit to  the measurements. An effective means for examining 
this is to look at the magnitude and phase of the ratio of the measurement to  the 
model. There are three available measurements: HT, HsD, and HRs. If the model 
were perfect, the magnitude of the ratio would be one (or zero dB in log scale), and 
the phase would be zero. Figure 15 shows the magnitude of this ratio for all conditions 
and operators; Figure 16 shows the phase of this ratio. 

As shown in the figures, the overall fit quality is quite good. For each condition 
and operator, a relatively low number of parameters (seven total) were used to fit 
up to 60 measurements (3 describing functions x 10 frequencies x 2 values per 
complex measurement). The correspondence of the combined size and disparity signal 
measurement HT is clearly superior to the other measurements; this is likely because 
the measurement was made with a much higher amplitude of input signal (2, as 

4Some measurements were not included in the model fitting; the criteria for selection of acceptable 
measurements is described in Section B.3 of Appendix B. 
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opposed to y and z) .  This yields a higher signal-tenoise ratio, resulting in smaller 
variances in measurement. 

Effects of Disturbances The measurement technique used to determine the indi- 
vidual responses to stereo disparity and relative size requires that a portion of these 
cues be independent; that is, the depth consistent with disparity and depth consistent 
with relative size are rarely identical during the course of a data run. The two base- 
line disturbance cases were included in the testing to determine if this experimental 
manipulation produced a different control strategy. The response of the operator HT 
for the baseline and multiple disturbance cases are shown in Figures 17 and 18 for the 
rate-control and acceleration-control cases, respectively. As can be seen, there is only 
a slight variation in these responses from the addition of the multiple disturbances. 

34 



rate control case, magnitude in dB 

10.. 
0 .  

. .  , : .  , : , :  .:.: ::.:. . . . .  

. .  .@ . 6: .:.e31 re. e. . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . .  
-10' 

0.. 
-2 
4 - 

20 . . . . . . . .  , . . . . . . . .  
' Op41 10 . . . .  : . : . : .:_ : ::::. . . . :  ..:..: .:.::::.:.. . . . . . .  

. . . Q . : Q ; . : . @ r  .a :. 8;. . . . . . . .  . . . . . . . . . . . . . .  I p 
. . . . .  ; . .  ; . . . . .  :. . . . .  .:.@ .. :. ....... .O:. . .; 
. . . . .  : . : . : . : . : : : ; :  . . .  :. : , : . : . : ;e . :  . ; . . . . . . . . .  . e' .:' ' '. . . . . . . . . .  

. . . . . . . . .  . . . . . . . . .  . .  .- 
0 . . . .  . . . . .  . . .  .:. . .  O Q .  . . . . .  

-1 0 e3 

0 
-2 
-4 

20 
10 
0 

-1 0 
20 
10 
0 

..cy .@ . 'e: .:.e, id. *. :. .~ . :. .I. :. I., : _ j  .op 4? 

. . . . . I  . :  : . : . ; ; : : :  . .  :. ... :&j.:.::.::.. ..:. .; 

. . . . .  : . .  ; . ; . :. ; : ; ::. . . . . . . . . . . . . . . . .  .e.:. . . .  .:. . . .  . . . . . .  
. . . . . . . . .  . . . . . . . . .  . 6 1 .  

20 
10 
0 

-1 0 
20 
10 
0 . . . . . . . . .  . . . . . . . . .  . .  

-10' 
lo-' 1 oo 10' 

frequency - radlsec 

rate control case, phase in radians 

-4 . . . .  ; . . : . : . : . : : : ; :  . . . . .  :...:.,:.:.:.:..:,: e . . : . . :  
-6 l  

. . . . . . . . .  . . . . . . . . .  . .  

-4 . . . .  ; . .  ; . : . :. ; ; : ; :. . . . .  :. . .  ;. . ; ... :. ;$@.:. ~. .;, . .: . . . . . . . . .  . . . . . . . . .  
-6 

. . . . . .  -4 . . . .  ; . .  ; . ; .:. . : ; ::. . . . . . . . . . . . . . . . .  ,e.: 
-6 

. . .  .:. . . .  
. . . . . . . . .  . . . . . . . . .  . .  

4 . . . .  ; . : . : . : . : : : : :  . . . . .  :. .:..:. :.::::.: @ . . : . . . '  
. . . . . . . . .  . . . . . . . . .  . .  - 

-6 
0 

-2 
-4 
-6 
0 

-2 
-4 
-6' 
lo-' 1 oo 10' 

frequency - radsec 

Figure 17. Operator response to depth with baseline and multiple disturbances, rate- 
control case. 

35 



acceleration control case, magnitude in dB 

-2 
-4 .  

acceleration control case, phase in radians 

o . . x  . ;  .ix;.;.e;;d.@.;. e:. ' .:. ' :. ' :. ...... . . . .  " '  1. . .op z; 
. . . . .  ; . ; . ; .:. ; ; ; ;:. . . .  ; .; .:e. ;: . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  .@.: . .:. . .: . . . . . . . . .  . . . . . . . . .  . .  

2 
0 

-2 
-4 
-6 

0. 
-2 
-4 

20 
0 

-20 

20 
0 

-20 

20 
0 

-20 

" ' :  . : . : . : . . : ! ? -  . .  .e.... 1 Pa;  
. .  :. . .  y; @ '  ;, .; 

. . .  , . > ,  . . .  ; . : ; . . .  . . . . . .  . .  . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . . .  . . . . . . . . .  

2o . . . . .  .u, . . . . . . . . . . . . . . .  . .  , . , . , ... , , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 
20 
0 

-20 

20 
0 

-20 
1 0-1 1 oo 1 o1 

frequency - radsec 

2 
0 
-2 
-4 
-6 
2 
0 
-2 
-4 
-6 
2 
0 

-2 
-4 
-6 

-6' I 

Figure 18. 
acceleration-control case. 

Operator response to depth with baseline and multiple disturbances, 

36 



4 Discussion 

The purpose of this study was to develop a model of depth-cue integration in a closed- 
loop manual control task. The model consists of three basic components: perception, 
control, and neuromuscular dynamics. The control and neuromuscular dynamics por- 
tions of our model are derived from manual control research. The perception com- 
ponent is similar to the additive models previously advanced by Bruno and Cutting, 
and Clark and Yuille [Bruno and Cutting, 1988, Clark and Yuille, 19901. However, 
the current model is somewhat more complex than the additive models in that posi- 
tion and velocity perception are considered to  be different processes. Both velocity 
and position perception are modelled as additive systems, but these two systems are 
allowed to  operate independently. This model is highly effective at describing the 
input/output relationships of the human operator. 

When the model was tested with our data, both the neuromuscular dynamics and 
control portions of the model behaved in ways consistent with the existing body of 
manual control research. The neuromuscular dynamics were generally represented 
with a second-order system and a time delay; because the frequency of the second- 
order system typically was well above the crossover frequency of the closed-loop sys- 
tem, it does not particularly impact the closed-loop system performance, and thus 
will not be discussed further. The control portion of the model consisted of a lead ele- 
ment, specifically a weighted summation of position and velocity signals. Predictably 
(from manual control), in rate-control tasks, the control output was dominated by 
position feedback. In acceleration-control tasks, the output was dominated by veloc- 
ity feedback (see Figure 12c). There was effectively no change in the model control 
parameters due to the manipulation of viewing distance; only the manipulation of 
control task type affected these parameters of the model. 

The perception parameter fits of the model revealed some interesting character- 
istics. First, the perception of position was more dependent upon stereo disparity, 
and perception of velocity was more dependent upon relative size (refer to Figure 10). 
This effect was seen in all of the conditions, both near and far viewing distance, and 
both rate and acceleration control. Secondly, the perception parameters changed sig- 
nificantly when the viewing distance changed; both position and velocity perception 
became more reliant upon relative size. Because the viewing distance manipulation 
did not affect the magnitude of the relative size cue (in visual angle), and did diminish 
the stereo disparity cue, it follows that operators modified their depth cue integration 
strategy when the stereo disparity cue became less salient. The perception parame- 
ters were not affected significantly by the change in control task. Additionally, the 
perception parameters showed no correlation with static stereo acuity scores of the 
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participants; good static stereo acuity did not imply more reliance upon stereo dis- 
parity as a cue. 

The ANOVA analyses on the outcome variables (depth error rms, percent of con- 
trol activity correlated with stereo disparity and relative size disturbances) are con- 
sistent with the modeling results. Depth error rms increased significantly when the 
viewing distance was increased, due to the fact that the stereo disparity cue becomes 
less useful. Depth error rms also increased significantly for the acceleration-control 
task; this is expected from manual control, because the acceleration-control task is 
more difficult to do than the rate-control task. The other two dependent measures 
were the percent of control activity correlated with the stereo disparity disturbance, 
and the percent of control activity correlated with the relative size disturbance. At 
the far viewing distance, the percent of control activity correlated with relative size in- 
creased, and the percent of control activity correlated with stereo disparity decreased. 
This result is completely consistent with the modeling results, which showed that the 
weighting on relative size increased, and weighting on stereo disparity decreased, in 
the far viewing condition. 

Regarding the manipulation of control task, there was a main effect on the percent 
of control activity for both disturbances: the percent of control activity increased with 
the acceleration-control task. This result is most likely an artifact of the disturbance 
signal characteristics. These disturbances are sum-of-sines signals. As can be seen 
in Table 2, the magnitude of the disturbance signal x is ten times greater than the 
magnitude of independent disturbance signals y and z (which drive stereo disparity 
and relative size, respectively) at frequencies below 1.5 rad/sec. When feeding back 
position, as the operator does with the rate-control dynamics, the relative magnitudes 
of y and z will be quite small in comparison with x. However, in the acceleration- 
control condition, the operator will use much more velocity than position feedback. 
In velocity, the signals y and z will have much more effect. This can be demonstrated 
by looking at the derivative of a sine function: 

d( sin(&)) 
dt 

= w cos(wt) (34) 

The velocity of the sine wave function is a cosine wave function multiplied by fre- 
quency. Thus, when we look at the relative magnitude of the disturbance velocities, 
the contributions of the disturbances y and z change markedly relative to x. This 
is shown in Figure 19. Thus, when the operator feeds back velocity, the relative 
contributions of y and z should increase. This is the observed effect in the data. 
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Figure 19. Magnitudes of disturbance signals, in position (a) and velocity (b). Note 
that the velocities of the disturbance signals y and z are much greater than the 
positions, relative to the disturbance signal z. 
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5 Conclusions 
Our depth-cue integration and control model accurately characterizes the activity of 
the operator over a range of tasks. This model incorporates control and neuromuscu- 
lar dynamics from previous manual control work with perceptual models suggested 
by depth-cue integration paradigms. The modelling results suggest that the depth- 
cue integration strategy of the operator changes as a function of the saliency of the 
available cues, but does not change as a function of the control task dynamics. The 
modelling also suggests that the operator depends more on stereo disparity than rel- 
ative size for position perception, and more on relative size than stereo disparity for 
velocity perception. As predicted by manual control, the operator uses more velocity 
information with acceleration-control dynamics than with rate-control dynamics. 

Because the operator uses more velocity feedback in acceleration-control tasks, 
and because velocity perception is more dependent upon relative size than stereo 
disparity, the results imply that stereo disparity could be a much less useful cue 
in acceleration-control tasks. Conversely, because accurate position information is 
necessary for rate-control tasks, and stereo disparity dominates position perception, 
stereo disparity is probably a highly useful cue for rate-control tasks. 

Tests of static stereo acuity were not shown to be predictive of the operators 
reliance on stereo disparity as a cue. 
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A Experiment Appendix 

A.l  Vehicle Dynamic Simulation 
The following equation was used for the rate-control dynamics (refer to Figure 3): 

For the acceleration-control dynamics, the equation was: 

In both cases, the disturbances affected the stereo disparity and relative size as follows: 

The position, d ,  is in units of inches. The control input of the operator is 6; the 
maximum range achievable was from -1 to 1. The scaling factor on the control was 
adjusted depending upon the condition. For the rate-control conditions in the near 
position, Kb was set to  a value of 20. For the rate-control, far position condition, 
the value was 30. This was done to keep the sensitivity to the changes in visual 
angle constant. For the acceleration-control condition, the value was set to 10. d s o  
and dRs are the depths used to graphically render stereo disparity and relative size, 
respectively. In implementation, the object was drawn at a depth corresponding to 
dsD;  then the size of the object was scaled to  be consistent with the relative size 
depth, dRs. 

These state-space equations were converted to discrete form for real-time sim- 
ulation with a sampling interval of T = 1/48 seconds [Franklin et al. 19901. The 
resulting discrete state-space equations were: 
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i kxi a,, wxi kyi uyi wYi k,, a,, 
1 5 3.0 0.13 6 0.3 0.16 7 0.3 

wzi 
0.18 

2 
3 
4 

I 1 1 

8 3.0 0.21 9 0.3 0.24 11 0.3 0.29 
13 3.0 0.34 17 0.3 0.45 19 0.3 0.50 
23 3.0 0.60 29 0.3 0.76 31 0.3 0.81 

I 9 11 311 I 0.3 I 8.14 11 313 1 0.3 I 8.19 11 317 1 0.3 I 8.30 1 II I I II I I I 1  I 1 

5 
6 

, I  I I I ,  1 

10 11 521 I 0.3 I 13.64 11 523 I 0.3 1 13.69 11 541 I 0.3 I 14.16 

I 

37 3.0 0.97 41 0.3 1.07 43 0.3 1.13 
59 3.0 1.54 61 0.3 1.60 67 0.3 1.75 

Table 2. Disturbance spectra magnitudes and frequencies. The frequencies (wxi , wyi, 

and wZi) are expressed in radians/sec. 

7 
8 

The disturbances z, y and z had the following form as a function of time ( t ) :  

101 0.3 2.64 103 0.3 2.70 107 0.3 2.80 
179 0.3 4.69 181 0.3 4.74 191 0.3 5.00 

The disturbance spectra were designed to conform to guidelines for pilot frequency 
response identification [McRuer and Krendel 19741. Values for k were chosen to create 
frequency values that were logarithmically spaced between approximately 0.15 and 
15 rad/sec. The actual values of a, k and resulting frequencies (w = 2~k/240)  are 
shown in Table 2 for the three disturbance spectra. 

‘lhe phase offsets ( p )  for each repetition and disturbance (z, y and z )  were precom- 
puted with a random number generator, randomly distributed from -7r to T .  These 
angles used for each repetition are shown in Tables 3, 4 and 5 for the disturbances z, 
y, and z ,  respectively. 
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1 
2 

0.26 5.73 4.92 4.11 3.30 2.49 1.67 0.86 
2.11 5.04 1.68 4.60 1.24 4.17 0.81 3.74 

3 
4 

1.18 4.29 1.12 4.23 1.06 4.18 1.01 4.12 
2.30 6.20 3.82 1.44 5.35 2.97 0.59 4.49 

5 
6 

I I I I I I I I 9 11 5.86 I 1.86 14.15 10.16 I 2.44 14.73 10.74 13.02 I 

. ~. ~ _ _  

0.83 3.35 5.86 2.09 4.60 0.83 3.35 5.86 
0.96 3.33 5.70 1.78 4.15 0.24 2.60 4.97 

I I 

10 11 3.73 [ 0.15 I 2.86 I 5.57 I 1.99 14.70 I 1.12 13.82 

7 5.07 5.64 
8 1.33 1.96 

Table 3. Experiment phase angles pzi used to define disturbance 2 per repetition. 

I 

6.21 0.50 1.07 1.64 2.21 2.78 
2.59 3.23 3.86 4.50 5.13 5.76 

F I1 ReDetition I 

I I I I 10 1) 2.47 I 3.21 13.94 [ 4.68 I 5.42 I 6.16 10.61 I 1.35 

Table 4. Experiment phase angles pyi used to define disturbance y per repetition. 
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7- Repetition 
i 
1 

1 2 3 4- 5 6 7 8 
5.25 3.60 1.96 0.32 4.95 3.31 1.67 0.02 

2 
3 

0.01 1.37 2.73 4.08 5.44 0.51 1.87 3.23 
4.72 3.94 3.16 2.39 1.61 0.84 0.06 5.57 

4 
5 
6 

3.60 4.98 0.08 1.46 2.84 4.22 5.60 0.70 
5.97 3.19 0.40 3.90 1.11 4.61 1.82 5.32 
1.36 5.39 3.13 0.87 4.90 2.64 0.39 4.41 

Table 5. Experiment phase angles pzi used to define disturbance z per repetition. 

7 
8 

44 

3.91 4.95 6.00 0.76 1.80 2.85 3.89 4.94 
3.60 4.75 5.90 0.76 1.91 3.06 4.20 5.35 

~ 

9 5.60 5.75 5.89 6.04 6.19 0.05 0.20 0.34 
10 5.65 3.38 1.11 5.13 2.86 0.59 4.61 2.34 



A.2 Task Instructions 
The written instructions provided to participants are shown below: 

Depth Cue Control Study 

Thank you for agreeing to  participate in this study. The objective of the 
study is to determine how humans perceive and use depth information. 

In this task, you will be asked to  control the depth of a displayed object. 
Two objects will be displayed; the one on the left will remain stationary, 
at a fixed depth. Your task is to control the fore-aft position of the object 
on the right with the joystick, trying to  keep it at the same depth as the 
object on the left. The position of the object on the right will be continu- 
ously affected by disturbances, so you will be required to make continuous 
control adjustments to  keep it at the same depth as the standard on the 
left. 

Several factors will be varied from run to run. These include: 

1. the types of disturbances, 

2. your viewing distance from the display, and 

3. the difficulty of the control task 

You will need to run this experiment over a two day period, allotting 
at least 5 hours per day for task completion. The experiment is largely 
self-paced, with instructions provided on the screen. There will be points 
between some runs during which you will require assistance to  adjust your 
viewing distance, and others when you are required to take rests of at least 
a specified amount of time. 

You will be doing the task while wearing stereo viewing glasses, which cre- 
ate a 3-dimensional perception in the image. Using these shutter glasses 
can be fatiguing on your eyes, so it is important that you rest your eyes 
as often as you feel is necessary to be comfortable, and to  retain adequate 
task performance. Contact the experimenter immediately if you are expe- 
riencing any physical discomfort during the experiment. If, for whatever 
reason, you wish to  discontinue your participation in this experiment, you 
are free to do so. 
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The two days will be associated with the two levels of control difficulty. 
These conditions are called the Rate-Control and Acceleration-Control 
cases, and are described below. 

Rate-Control Case 
The rate-control case represents the easier of the two tasks that will 
be presented. The velocity of the object (or its rate) is proportional 
to the displacement of the joystick. Rate control is experienced in 
many real-world situations; one example is the lateral control of 
your automobile. The rate-of-change of the direction of the car is 
proportional to the displacement of the steering wheel. 

Acceleration-Cont rol Case 
The acceleration-control case represents the more difficult of the 
two tasks that will be presented. In these runs, the acceleration 
of the object is proportional to the displacement of the joystick. 
Acceleration control is quite challenging, but does have real-world 
analogs; the attitude control of a spacecraft is one such example. 

In order for us to get meaningful data for our analyses, you must con- 
trol the objects position quite precisely. We realize this is a difficult and 
repetetive task, but your effort to  maintain precise control is critical. Fol- 
lowing the first day of testing, we will be able to determine whether your 
control strategies are generating the level of precision our analyses require. 
If not, we may elect to discontinue the experiment at that point, 

A.3 Individual Model Parameter Summary 
Crossover frequencies w, and phase margins & are shown in Table 6. The perceptual 
parameters W,,, and W,, are shown in Table 7. The control weights K p  and K,, are 
shown in Table 8. The parameters of neuromuscular function Y, (7, c ~ ,  and w N )  are 
shown in Table 9. 
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I 11 Rate, near 11 Rate, far 11 Accel, near I 
1 

, OP ~c 4m wc dm wc dm , 

I1  I II I I, I I 2 11 2.27 I 60.88 11 2.21 I 63.60 11 2.38 I 23.14 I 
1 1.53 71.18 1.53 71.64 1.26 44.43 

II I II I 11 I I 5 I] 0.68 I 103.97 11 1.01 I 91.12 11 0.85 I 57.99 1 
3 
4 

0.90 97.95 0.86 98.35 1.08 49.18 
0.68 86.20 0.49 91.20 1.24 37.58 

I 1  I I 1  I II I I 8 11 1.94 I 75.55 11 1.90 I 79.67 I] 1.79 1 39.04 I 
6 
7 

Table 6. Derived crossover values of the open-loop transfer function Y,Yn ( sK,, + K,)Yc 
for all operators and conditions. Crossover frequency w, is expressed in radians/sec, 
phase margin drn is in degrees. 

2.25 63.30 2.09 68.18 2.45 18.43 
1.84 56.08 1.90 56.27 0.65 43.90 

6 
7 
8 

Table 7. Weighting parameters W,, and W,,, for operators and conditions. The 
weights are dimensionless parameters that can take on values between zero and one. 

0.812 0.474 0.606 0.329 0.823 0.377 
0.464 0.314 0.467 0.135 0.000 0.307 
0.738 0.525 0.751 0.487 1.000 0.505 

47 



I 11 Rate, near 11 Rate, far 11 Accel, near I 

4 
5 
6 

0.65 0.29 0.46 0.32 0.23 0.58 
0.49 0.71 0.76 0.71 0.06 0.41 
1.55 1.76 1.45 1.53 0.91 1.11 

7 
8 

Table 8. Gain parameters K p  and K, for operators and conditions. K p  is in units of 
control output per inch depth; K, is in units of control output per inch depth/sec. 

I I 

1.76 0.24 1.82 0.21 0.09 0.29 
1.26 0.98 1.31 0.86 0.29 0.83 

Table 9. Parameter values of the function YN for most operators and conditions. 
The frequency W N  is in radians/sec, the time delay T is in seconds, and ( N  is a 
dimensionless variable. For the two rate-control conditions with operator 6, the data 
was better characterized with a transfer function of the form Y, = exp(-T)/(sq + 1). 
For the near condition, TI = .711 sec.; for the far rate condition, TI = .643 sec. 
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A.4 Individual Model Fit Plots 
The model fits are shown in the following figures (Figures 20 through 43). Error 
bars depict the calculated confidence intervals for each measurement (see Appendix 
Section B.3.1). 

I 
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Operator 1 : rate control, far viewing, multiple disturbances 

-1 -0.5 0 0.5 1 1.5 
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H,, measured 
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-1 -0.5 0 0.5 1 1.5 
loglo frequency - radlsec 

-4 '  

Figure 20. Experiment model fit results for Opcrator 1, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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Operator 2: rate control, near viewing, multiple disturbances 
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Figure 21. Experiment model fit results for Operator 2, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 3: rate control, near viewing, multiple disturbances 

-1 -0.5 0 0.5 1 1.5 
log,, frequency - radsec 

-1 -0.5 0 0.5 1 1.5 
log,, frequency - radsec 

Figure 22. Experiment model fit results for Operator 3, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 4: rate control, near viewing, multiple disturbances 
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Figure 23. Experiment model fit results for Operator 4, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 5: rate control, near viewing, multiple disturbances 
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Figure 21. Experiment model fit results for Operator 5, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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2o r 

0 -  

Operator 6: rate control, near viewing, multiple disturbances 
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Figure 25. Experiment model fit results for Operator 6, Ratc Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 7: rate control, near viewing, multiple disturbances 

Figurc 26. Experiment model fit results for Operator 7, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 8: rate control, near viewing, multiple disturbances 
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Figure 27. Experiment model fit results for Operator 8, Rate Control, Near Viewing 
Condition, Multiple Disturbances. 
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Operator 1 : rate control, far viewing, multiple disturbances 
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Figure 28. Experiment modcl fit results for Operator 1, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 

58 



2o r 
Operator 2: rate control, far viewing, multiple disturbances 
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Figure 29. Experiment model fit results for Operator 2, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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Operator 3: rate control, far viewing, multiple disturbances 
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Figure 30. Experiment model fit results for Operator 3, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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5r 
Operator 4: rate control, far viewing, multiple disturbances 
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Figure 31. Expcriment model fit results for Operator 4, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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*O r 
Operator 5: rate control, far viewing, multiple disturbances 
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Figure 32. Experiment model fit results for Operator 5, Rate Control, Far Vicwing 
Condition, Multiple Disturbances. 
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Operator 6: rate control, far viewing, multiple disturbances 
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Figure 33. Experiment model fit results for Operator 6 ,  Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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Operator 7: rate control, far viewing, multiple distuibances 
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Figure 34. Experiment model fit results for Operator 7, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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20 r 
Operator 8: rate control, far viewing, multiple disturbances 
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Figure 35. Experiment model fit results for Operator 8, Rate Control, Far Viewing 
Condition, Multiple Disturbances. 
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Operator 1 : acceleration control, near viewing, multiple disturt>ances 
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Figure 36. Experiment model fit results for Operator 1, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 
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Operator 2: acceleration control, near viewing, multiple disturbances 
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Figure 37. Experiment model fit results for Operator 2, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 
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Operator 3: acceleration control, near viewing, multiple disturbances 
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Figure 38. Experiment model fit results for Operator 3, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 

68 



Operator 4: acceleration control, near viewing, multiple disturbances 
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Figure 39. Experiment model fit results for Operator 4, Acceleration Control, Ncar 
Viewing Condition, Multiple Disturbances. 

69 



Operator 5: acceleration control, near viewing, multiple disturbances 
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Figure 40. Experiment model fit results for Operator 5, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 
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Operator 6: acceleration control, near viewing, multiple disturbances 
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Figure 41. Experiment model fit results for Operator 6, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 
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Operator 7: acceleration control, near viewing, multiple disturbances 
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Figure 42. Experiment model fit results for Operator 7, Acceleration Control, Ncar 
Viewing Condition, Multiple Disturbances. 
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Operator 8: acceleration control, near viewing, multiple disturbances 
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Figure 43. Experiment model fit results for Operator 8, Acceleration Control, Near 
Viewing Condition, Multiple Disturbances. 
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B Measurement Appendix 

B.l  Cross-Spectral Density Estimation 
Repeated from Section 3.2.2, the quantities we want to estimate are: 

where 6 is the control output of the operator, d is the actual depth of the object, and 
u, v, and w are disturbance sources. Given the time histories of these variables, we can 
estimate the cross-spectral densities through use of the Discrete Fourier Transform 
(DFT) coefficients of the time histories [Levison 19801. For a discrete time sequence 
s(n), n = 0,1, .  . . , N - 1,the DFT coefficient X (  f) is defined as: 

k = 0 , 1 ,  ... , N -  1 (51) 
n k 

X(f) = z(n) exp(-j27rk-), f = - 
n=O N " 

N-1 

The cross-spectral densities of the time sequences z(n) and y(n) can be estimated by: 
1 

@.zy(f%) = --xu N )Y(f I* (52) 

We can obtain estimates of HT,  Hso, and HRS for the ith trial: 

where Ai( f), K(  f ) ,  Wi( f), and Di(f) are the DFT coefficients of'the time sequences 
6, v, w, and d from the ith trial. Estimates of the cross-spectral density are obtained 
only at  those frequencies at which the disturbance was input. For this experiment, 
with the update rate at 48 Hz and the data run length of 240 seconds, the length 
of each time history used to  form the estimate was N = 48 x 240 = 11520. For 
example, to estimate cross-spectral densities needed for H T ,  DFT coefficients were 
used corresponding to f = 5/N, 8/N, etc. (using the values of kui in Table 2). 
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B.2 Mean and Variance Estimation 
The previous section describes the estimate of cross-spectral densities for individual 
trials. For each condition, eight trials were conducted, each using different randomized 
phase angles in the sum-of-sines disturbances. In order to develop a parameterized - 
model, we need not only an estimate of the mean of the describing functions ( h ~ ,  
H s ~ ,  ~ R s )  but also variances for these estimates. 
- - 

B.2.1 Mean Estimation 

For M trials, the means of the measurements HT,  HSD,  and HRS are: 

l M  - 
f i T ( f u s )  = jj fiT; (fus), fiT; ( J u s )  

2 = 1  

This summation operation is straightforward even though the DFT coefficients are 
complex; the real and imaginary components are summed. 

B 2.2  Variance Estimation 

Because the measurements are complex, characterization of the variance of the esti- 
mate must include two components. We could use real and imaginary components 
of variance, but a more useful characterization is to examine the variance which 
contributes magnitude and phase variations separately. This can be done through 
a coordinate transformation. We rotate both the mean measurement and the indi- 
vidual measurements so that the transformed mean measurement is a positive, real 
number (no imaginary component). As will be seen, this transformation facilitates 
visualization of the confidence intervals on -. a Bode plot. 

The angle of the mean measurement H is: 

The coordinate transformation is applied to the individual measurements H, as 
follows: 

H: = (aicos(6) + bisin(0)> + j(-aisin(O) + bicos(8)) (60) 
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where Hi = ai + j b i .  It can be easily shown that the transformed mean measurement 
is: - 

H = (61) 

We now define the two components of the variance, the variance of the real com- 
ponent O R ,  and the variance of the imaginary, component, OR, as: 

Standard error is the expected variance of the estimate of the mean, not the trial-to- 
trial variance, and is defined as: 

OR SER = - 
M - 1  

OI SEI = - 
M - 1  

These variances will later prove particularly useful for visualization of error on Bode 
plots, because the real and imaginary components of these transformed measurements 
map directly to  magnitude and phase. In addition to aiding in the visualization of 
variance, the transformed variables also can help the experimenter determine possible 
sources of variance. Highly non-symmetric variances between magnitude and phase 
components could be an indication of nonstationarity in the models. For example, 
high phase variance and low magnitude variance could be indicative of variations in 
time delay of the model. Similarly, high magnitude variances with low phase variances 
could indicate gain variations. 

B.3 Measurement Inclusion Decisions 
At this point, the variances will be used to  determine whether a particular measure- 
ment should be included in developing model parameters. In some cases, measure- 
ments have so much noise that their inclusion in model fitting will have a harmful 
effect on the fidelity of the model. The method used to make these decisions is 
described in this section. 

Having determined estimates of the variances of the measurements, we can develop 
confidence intervals for the measurements. A 95% confidence interval (a box) around 

77 



the measurement H’ is defined as: 

where t is derived from the student’s t distribution for, in this case, M - 1 degrees 
of freedom, for t.975. These tables are readily available in statistics textbooks and 
other math references; [Speigel, M. R., 19961 is one example. Having derived a “box” 
around the complex measurement, in which we have a 95% confidence that the true 
value lies within, we can use this information both to  determine whether the point 
is worth including in our model fit, and to help visualize the variance in plots of 
magnitude and phase. 

B.3.1 To Use or Not To Use 

For this experiment, the choice to  use or not use a particular measurement was based 
upon this rule: 
Measurements for which the confidence interval box encloses the origin are not used 
for model parameter identification. 

While other standards could be considered and adhered to, this particular rule 
makes good practical sense. When the confidence interval box encloses the origin, the 
phase of the measurement is completely indeterminate; it could be in any quadrant. 
The magnitude estimate associated with such a measurement is likewise suspect in 
this case; with the individual measurements pointing in all directions, the magnitude 
of the sum of the measurements (which occurs in complex vector space) is likely to  
be highly compromised by the noise. Examples of how to use these techniques to  
accept or reject measurements, and how to visualize variance on a Bode plot, are 
shown below. 

Example 1: Measurements to be Accepted and Rejected for Parameter 
Identification For Operator 1, rate-control, far viewing condition, we will examine 
in more detail how judgements are made on acceptance and rejection of measurements 
for parameter identification. We will look at two measurements, the measurememt of 
H s D  at 0.45 and 0.76 rad/sec. 
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At 0.76 rad/sec, the individual measurements are: 

-0.42255 - 0.19905j 
-0.032014 - 0.708273’ 
-0.89315 - 0.33202j 
-0.73509 + 0.28657j 

-0.0075527 + 0.0088635j 
-0.015362 - 0.71277j 

0.16727 - 0.465893’ 
0.15769 - 0.63029j 
- 

The mean of this measurement vector is HSD = -0.22259-0.34411i. As described in 
Section B.2.2, the measurement can be transformed through a rotation angle deter- 
mined by the mean measurement. After . transformation, this measurement vector 
becomes: 

0.3966 - 0.24673’ 
0.6121 + 0.35784 
0.7639 - 0.5696j 
0.1586 - 0.7729~’ 

-0.0033 - 0.0112j &,(w = 0.76) = 

0.6068 + 0.3742j 
0.3003 + 0.3935j I 0.4436 + 0.4747j 

The means and variances of these transformed variables are: 
- 
HLD = 0.4098 

012 = 0.233 

2 UR = 0.064596 

Confidence intervals can be determined; for 8 measurements, the value of t is 2.36. 
From Equations 64, 65 and 66 we obtain the confidence intervals in the real and 
imaginary directions: 

CI,t = (0.4098 f 0.212) + j (f0.403) (70) 

These confidence intervals, the individual and mean measurements are depicted in 
Figure 44(a). As can be seen, the confidence interval box does not enclose the origin, 
therefore we would use this measurement to include in parameter identification. 
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For 0.45 rad/sec, the measurement is: 

-0.26292 - 0.19889j 
0.20991 - 0.413473’ 

-0.03099 + 0.25055j 
0.18869 + 0.18437j 

-0.19518 - 0.474273’ 
-0.067595 - 0.20504j 
-0.34576 - 0.22767j 
-0.079821 + 0.29208j 

The mean measurement is HSD = -0.072959-0.099043j. The transformed measure- 
ment vector is: 

H & D ( u  = 0.45) = 

’ 0.3161 - 0.0937j 
0.2084 + 0.4142j 

-0.1833 - 0.1735j 
-0.2604 + 0.0426j 
0.4976 + 0.1241j 
0.2052 + 0.06723’ 
0.3884 - 0.1434j 

-0.1878 - 0.2375j 
The mean and variation of this measurement is: 

H k D  = 0.1230 
C T ~  = 0.085643 
a; = 0.044169 

The resulting confidence intervals are: 

C l ~ t  = (0.1230 f 0.244) + j ( f0 .175)  

(73) 

(74) 

The confidence intervals, individual measurements, and mean are depicted in Fig- 
ure 44(b). As can be seen, the corifidence interval box fully encloses the origin; this 
point was not used in parameter identification. 

Example 2: Bode Plots with Confidence Interval Bars As was mentioned 
earlier, the characterizations of the real and imaginary confidence intervals are easily 
incorporated into visualizations of these intervals on Bode plots. Figure 44(b) is re- 
peated in Figure 45 to  better visualize the relationship to  the Bode plot. Because the 

80 



0.4 

0.2 

0 
en m 
.E -0.2 

-0.4 

-0.6 

- 
0 0.5 1 

real 

- 
- a  . -e - 

I 
1 
I 

\ I ' - I  

I 

I 

I 
. I 

I 

I 
' I 

I 
0 1  

L - - A  - 
0 

n - 

0.4 

0.3 

0.2 

B 0.1 
E .- 

0 

-0.1 

-0.2 

A 

I Y 4 

I I 

-0.2 0 0.2 0.4 
real 

Figure 44. Graphic representations of measurements, showing individual measure- 
ments (unfilled circles), mean measurement (filled circle), and a box showing the 
confidence interval (dashed line). Figure (a), depicting the measurement of H s D  at 
0.76 rad/sec for Operator 1, rate-control task, far distance, is a measurement ac- 
cepted for use in parameter identification because the confidence interval box does 
not enclose the origin. Figure (b), H ~ D  at 0.45 rad/sec for Operator 1, rate-control 
task, far distance, is a measurement not accepted for use in parameter identification 
because the confidence interval box does enclose the origin. 
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Figure 45. Graphic representation of measurement, showing how confidence interval 
bars are derived for Bode plot. 

Y '  
. -e/\- 8 ' / maxphass 

I/ I / 
' 

'4 min plagnitude w 

\ I  4 max' mz gnitude ;; . 

I \I\ \ 0 mi)l phase' 
' 

L - J - -  I 
\ 

* 

0 .  

Bode plot depicts magnitude and phase information in two different plots, we want 
to be able to develop confidence intervals for these two parameters independently. 
Looking at Figure 45, magnitude intervals can be determined from the real compw 
nents of the confidence intervals; the min and max magnitude locations are shown. 
Likewise, the min and max phase can be determined through the angle made by the 
imaginary confidence interval. For this particular point, the phase confidence interval 
is: 

0.403 
0.4098 

CI, = ftan-1- = .777rad (75) 

Because magnitude is typically shown in logarithmic units, conversion to the upper 
and lower boundaries in dB is necessary. The mean measurement magnitude is 0.4098, 
or -7.75 dB. The upper dB boundary will be the value in dB of 0.4098 + 0.212, or 
-4.1270 dB. The lower boundary will be at the value in dB of 0.4098 - 0.212, or - 
14.0755 dB. These confidence interval bars are shown in Figure 28. This technique for 
determining confidence intervals on magnitude measurements leads to non-symmetric 
bars on the logarithmic magnitude plots. 
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C Model Parameter Fit Appendix 
The method for obtaining parameters of the models is described in this section. We 
want to develop a model that is a function of frequency to fit the measurements. For 
a set of L measurements, and a model H that is a function of frequency and the 
parameters that describe it, the maximum likelihood model is achieved by choosing 
the model parameters to minimize: 

- -  
For the current problem, we have three sets of measurements (k~, H s ~ ,  and 

~ R s ) ,  and a total of seven parameters (W,,, Wps, K,, Kp,  r ,  uN, and (N) which 
together specify the corresponding models ( H T ,  Hso, and HRS; see Equations 25- 
27). Numerical optimization techniques are generally used for this type of problem, 
but the performance of numerical met hods are highly dependent upon choosing initial 
values of the parameters which are relatively close to the actual values. This situation 
required a multi-phase procedure to derive the parameters. The first phase was a 
rough estimate of the parameters affecting HT, through a least-squares technique. 
The second phase was a rough estimate of the parameters affecting HSO and HRS. 
The third phase was a numerical search to simultaneously derive parameters to best 
fit the measurements. 

- 

C.l  

A modified time-domain least-squares parameter identification technique was first 
used to identify the parameters affecting the model HT. This section contains a 
description of a this parameter identification technique, then a detailed description 
of how it was applied to derive parameters associated with HT.  

Phase 1: HT model parameter identification 
:!7 ; 

C. l . l  Least-squares fitting of transfer function parameters 

The basic technique used here is to 1) transform the frequency-domain measurements 
into a time-domain representation, 2) use the time-domain representation to  identify 
parameters of a discrete transfer function, and 3) transform the discrete transfer 
function back to a continuous transfer function. 
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A discrete transfer function, Y ( z ) ,  is defined as: 

(biz-' + + . . . + bpz-P) Y (2 )  = 
(1 - a l z - 1 -  a 2 2 - 2  - . . . - a , z - q )  

(77) 

If, for example, the transfer function Y ( z )  is meant to represent the input/output 
relationship of S/z, the corresponding difference equation would be: 

b k + l  = a l b k  + a 2 6 k - l  + .  . . + b k - q + l a q  + X k b l  + X k - l b 2  + . . . + X k - p b p  (78) 

where b k  represents the member of the time sequence b( t ) ,  where t = kT, and T is 
the sampling time interval. Given the time histories of the output and input ( b ( t )  
and z( t ) ,  respectively), a matrix can be formed to generate a least-squares solution 
for the discrete transfer function parameters ai and bi (assuming q >= p ,  required for 
the system to be causal). 

In more compact form, this can be expressed as a matrix equation: 
- 
6 = A E  

A least-squares fit for the parameter vector E can be obtained as follows: 

E = ( A ~ A ) - ~ A ~ ~  

Once the parameters of the discrete transfer function are obtained, a corresponding 
continuous transfer function can be obtained through the  w-transform: 

Y ( W )  = Y ( z ) L = ( 2 + W T ) / @ - W T )  (82) 

This transfer function can be treated as the continuous transfer function, with s = w. 
The continuous transfer function will have the form: 

(83) 
(CPSP + c p - 1 s p - 1  + . . . + C I S  + cfj) 
(d,sq + + . . . + dls + do) 

Y ( s )  = 
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Because frequency domain measurements are often derived from time sequences 
such as b ( t )  and ~ ( t ) ,  it's certainly possible to  derive the parameters of the discrete 
transfer function directly from these time histories. Continuous transfer function 
parameters can be derived from the w-transform of the discrete transfer function. 
However, in most cases the resulting transfer function will not have a very good cor- 
respondence with the frequency-domain measurements derived from the time hist+ 
ries. This is because the time domain fit will emphasize the portions of the frequency 
spectrum that have the greatest amplitudes; low amplitude portions of the frequency 
measurement will receive relatively little importance in the least-squares fit. 

It is possible to  modify the time domain least-squares procedure to have better 
correspondence to  the frequency domain measures. This can be done by constructing 
multiple time histories, each corresponding to an individual frequency measurement. 
Given a particular measurement, at the frequency w,  we can construct the following 
input/output relationship for the measurement H = a + j p :  

xk = sin(wkT) 
6 k  = Csin(wkT+q$) 

c = da2+p 

4 = tan-l(p/a) (87) 

Using these generated time histories, we can develop a matrix equation as in 
Equation 80. Now, if we modify the notation such that 8, and A, correspond to  the 
vectors and matrices constructed from the measurement taken at  frequency w,, we 
can concatenate the vectors and matrices as follows: 

Solution to  this system of equations will provide parameters that give a least-squares 
estimate for all of the frequency measurements simultaneously. However, because 
the magnitudes of individual frequency components have not been adjusted, this 
approach will likely yield a result that emphasizes the high amplitude components of 
the measurements. Two different approaches can be taken to rectify this, depending 
upon whether estimates of the variance in the measurements are available. However, 
weighting with the inverse of the variances in the measurements corrects this problem, 
because the variances scale with the magnitude of the measurement. Defining ai as 
the magnitude variance associated with the measurement Hi, we can write: 
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The variance that should be used in Equation 89 should be the sum of the real 
and imaginary variances (as described in Equations 62 and 63): 

(90) 0 2 = &:,+a; 

Once the parameters of the discrete transfer function have been obtained, the 
corresponding continuous transfer function can be found using the w-transform: 

y ( w )  = Y(Z)b=(2+wT)/ (2-wT)  (91) 

This transfer function can be treated as the continuous transfer function, with s = w. 

C.1.2 Application of least-squares fitting procedure to parameters affect- 
ing HT 

Equations 25 and 31 contain the model parameters necessary to define HT. They are 
combined to yield the following relationships: 

This model form has five free parameters: r ,  K,, Kp,  W N ,  and CN. Identification 
of the parameters W,, and Wps, related to the perception of depth, is possible later 
with the describing functions HsD and HRs. This model form contains a pure time 
delay, exp( --ST), which was not discussed in the previous methodology development. 
Although it would be possible to modify the discrete transfer function to contain a 
time delay that is an integer multiple of the sampling interval T (by multiplying the 
transfer function by z-', where T is the interger multiplier), another method can be 
used which does not necessitate changing the difference equation structure. 

Instead, we can modify the measurement vector as follows: 

The value of r was varied in steps of .05 seconds between .22 and .30 seconds; at each 
value of r ,  the four remaining parameters, K,, K p ,  W N ,  and (N, were identified using 
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the least-squares procedure on the modified measurement H(+T) .  At each time delay, 
the performance index was evaluated: 

The parameter r was chosen to be the value at which L was minimized. This was 
done for all operators and conditions. 

C.2 Phase 11: Estimation of parameters fitting HSO and HRS 
In this section, the method used to  estimate the parameters W,, and W,, is described. 
These parameters are constrained, in the model, to  values between 0 and 1. Therefore, 
a grid-search technique was employed to find parameters of W,, and W,, to best fit the 
measurements corresponding to  the describing functions in Equations 26 and 27, using 
the parameters for K,, Kp,  7, W N ,  and CN defined in the first step. The parameters 
were chosen to  minimize the following function: 

- 
Jtotal= ~(fiT, H T )  + J(Z~ HSO) + J(Z, H R S )  (95) 

using the definition of J contained in Equation 76. 

C.3 Phase 111: Numerical Estimation of all parameters 
Once all of the parameters have been determined for a given operator and condition, 
these parameters can be used as the starting point of a numerical search. In this 
case, the search was done using “fminsearch” in Matlab, to minimize the function 
described in Equation 95. 
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